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Microbes: Size Matters
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Back to the Future: The Ghost
Map

e 1849 London

— Epidemic began in Europe in 1840s
— Golden Square- 500 people died in 10
days

e John Snow — Father of modern
epidemiology

—Drew connection between well water
and cholera outbreaks
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Pathogens

e Pathogens- disease carrying organisms that grow
and multiply in host

 \Waterborne — spread by ingestion of contaminated
water (e.g., hepatitis A, cholera)

 \Water-washed — associated with poor hygiene due
to a lack of sufficient water (e.g., dysentery,
trachoma)

e \Water-based — spread by mere contact with water;
don’t require ingestion (e.g., schistosomiasis)

 \Water-related — require water to survive, but aren’t
spread by contact or ingestion of water (e.g.,
malaria, West Nile virus) E. coli




Types of Pathogens

Virus
 Small infectious agent that
replicates in living cells: genetic
material surrounded with a protein
coat ex. Polio, Hep A

Bacteria
* infectious microorganism ex.
Vibrio cholerae - cholera,

Salmonella Typhi — Typhoid
fever

John Snow —
Father of modern

. epidemiology.

Investigated
cholera epidemics
(London 1854)



Types of Pathogens (continued)

Protozoa
 Motile unicellular eukaryotes ex. Giardia
lamblia, Cryptosporidium

Helminths
e parasitic worms ex. Schistosomiasis,
dracunculiasis (guinea-worm disease)




Past: The Miracle of Drinking water Filtration and Disinfection

10,000 — Filtration, 1906

— Chlorination,

1000 1913

Number of typhoid cases

100

1885 1895 1905 1915 1925 1935 1945

Year

New Jersey begins routine disinfection of drinking water
(1908), other states followed



Fecal Pathogen Example: Salmonella enterica

* Rod-shaped, Gram-negative bacterium
e Spreads rapidly among chicken
* Waterborne Typhoid fever

* Pathogenic serovars:
* Typhimorium, Typhi (Typhoid fever), and Enteriditis
(Most common cause of food poisoning in US)

* First known asymptomatic carrier in US:
Typhoid Mary
e 1869, Irish immigrant in New York
* Infected up to 51 people (3 died)




Safe Drinking Water Act

* 1974 Act: federal responsibility for safe drinking water for >90% of population
* EPA established standards for systems serving 225 customers
e Public water systems required to monitor and control water quality
* EPA instituted primary and secondary standards

* 1986 Amendment

* Includes requiring EPA to use best available technology for regulated
contaminants

* All public water must be disinfected, all surface water must
be filtered

* 1996 Amendment Boil water, mayor says
* Annual customer confidence reports T —
* More controls on pathogens and DBPs
* Requires EPA to re-evaluate standards every 6 years

2002 Amendment - Water security 1993 Milwaukee Cryptosporidium Outbreak
* Bioterrorism and emergency response preparedness

Note: States can set stricter rules than the Federal Regulations 10



National Primary Drinking Water Regulations (NPDWRs)

Contaminant MCLG |MCL Health Effects Source Maximum Contaminant
- 1T, h . .

Cryptosporidium |zero con\':;i)tlers ed Gastrointestinal iliness Fecal waste Level (MCL)
Giardia lamblia  |zero  |TT, 99.9% removal |Gastrointestinal illness Fecal waste e Enforceable standards

: * Treatment technique
Heterotrophic n/a TT. 500 CFU/mL None. Used to rT_1e§sure Environment _ .
plate count (HPC) common bacteria in water. instead of MCL if pollutant
Legionella Jero TT, no specific Legionnaire's Disease, a type of |[Naturallyin is too difficult to detect and

g limit pneumonia water measure

. < 5% positive ina |[Not in itself; used as a presence |[Environment;
Total Coliforms  |zero

month indicator of harmful bacteria fecal coliform Maxi C ]
i : aximum Contaminant
Turbidity n/a T Ipd|ca.te water guahty and Soil runoff
filtration effectiveness Level Goals (MCLG)
Viruses (enteric) |zero T1,99.99% Gastrointestinal iliness Fecal waste
removal * Unenforceable goals
* Goal = no anticipated health
Treatment technique (TT): A required process intended to reduce the effects plus safety margin

level of a contaminant in drinking water (surface water treatment rules)
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NPDWRs

Total Coliform Bacteria o

* Water should be free of pathogens (not sterile)
 Difficult to test for all pathogens so use indicator organisms © Fisher Scientific

— Escherichia coli and total coliform test
— Rod-shaped, non-spore forming, can ferment lactose
— Indicate fecal contamination

Total Coliforms

— Coliforms >> pathogens
— Survive in natural waters but do not reproduce Fecal Coliforms

— Easy to culture (grow in the lab)

Die in drinking water; Easily killed by disinfectants

Opfortunistic Thrive in drinking water; Disinfectant resistant;
——
Pathogens NOT addressed by Safe Drinking Water Act
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Background - Opportunistic Pathogens (OPs)

Importance of Monitoring OPs

Responsible for majority of tap water-associated
hospitalizations and deaths in the US and many other countries

Cost of at least $2.39 billion annually

Higher risk to older individuals, the immunocompromised, and
those with other risk factors

Non-ingestion exposure routes / (\\%.

such as inhalation ni

13



Legionnaires' disease in the United States, 2000-2021
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Legionella is now the primary source of drinking-water
associated disease

50 Multiple
0 Unidentified

| @ Chemical
40
| O Viral

O Bacterial, non-Legionella
30 | | . @ Parasitic

m Bacterial, Legionella

Number of outbreaks

BV
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Management of

Legionella

in Water Systems

Committee on Management of Legionella in Water Systems
Water Science and Technology Board
Board on Life Sciences
Board on Population Health and Public Health Practice
Division on Earth and Life Studies

Health and Medicine Division

A Consensus Study Report of
The National Acadenties of
SCIENCES + ENGINEERING * MEDICINE

THE NATIONAL ACADEANVES PRESS
Washbngton, IXC
wnwaapedu

Prepublication Version - Subject to further editorial revision

National Academies of Sciences
Engineering and Medicine Report
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Present: Methods for Quantification of Legionella are evolving
-

Purpose: Diagnosis, Outbreak investigation, Routine monitoring,
Mitigation assessment, and Research

e Urinary antigen test (UAT) which detects only Lp1 Culture Legionella on Buffered
* Certified standard culture methods vs. New culture methods | charcoal Yeast Extract (BCYE) agar
* Quantitative PCR/droplet digital PCR

(Lspp., Lp, Lp1, L.anisa, L.micdadei, L.longbeachae, L.bozemanii)
* DNA Sequencing

e Co-culture with amoeba hosts Detect Legionella pneumophila
using IDEXX Legiolert kit

The diagnosis of LD caused by Legionella spp. other than Lp1 is very difficult with the
current routine approaches

Need evaluation, training, proficiency testing, national approaches for surveillance

New investment in modified culture and molecular tools is needed



Legionella and other opportunistic pathogens in premise
plumbing (OPPPs):

Legionella Acinetobacter Mycobacterium avium Pseudomonas
pneumophila baumannii complex (MAC) aeruginosa and Naegleria

* Thomas and Ashbolt, ES&T 2011: Tendency of OPPPs to be “amoebae-resisting microorganisms”
(ARMs)
* Increases Legionella virulence (i.e., more invasive of host tissue) (Gardufio et al. 2002)
* |Increases Legionella tolerance to disinfectants, heat-shock, etc. (Kwaik et al. 1997; Flynn and
Swanson, 2014)
* Falkinham, Pathogens 2015: Tend to be biofilm formers, tend to be disinfectant

tolerant/resistant.
18
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Present: Culturable Legionella pneumophila in Building
Plumbing Systems

To Cold Pipes

Cross-linked Polyethylene (PEX) Pipes
D = nominal pipe diameter (inches)

City Water

Blended Q = flow rate (gallons per minute)
et D=%"Q=2.2gpm
E e 1.5 days
4x GAC Filters 2 & (C) 8.8 days
remove disinfectants, E‘ 2
reduce BDOC, elevate HPCs -3 Bl o 2.3 days
T
TOlUIOpe o Constant Water = EXTTT N D=%"Q=0.25gpm G 17.4 days
. . Age Sampling Port .
Od | mayoml (water age = 1 day) — | Cold Inlet
Variable Water == -
3.9 days il —
(%) age Sampling Port y L. pneumophila — Cold Water
(water age = labeled 14
beside sampling port\J

L. pneumophila — Hot Water
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i S 0 ] = POEDisinfectantConc 8 <02 & 02 8 05 £ 1 B 25
Water Heater CT* [mg*min/L] 1.0
Species © L pneumophila < M.avium A Total Cell Counts 387 4.87 5.34 621 1269 21.26
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POEDisinfectantConc B <02 = 02 B 05 = 1 & 25 19



Present: gPCR of Legionella DNA at different Water Heater

Set Points Rhoads et al.
Microbiome
A L. pneumophila concentration (log gene copies/mL) 2015
Control System Water Use Fregency Experimental Water Use Freqgency
(39° C) Low Medium High System Low Medium High
5 months 4.2 4.2 4.1 Baseline (39° C) 4.3 4.3 4.2
8 months 4.2 3.4 3.9 Exp.1 (42° C) 3.5 3.1 3.0
13 months 4.3 4.7 4.3 Exp. 2 (51° C) 4.3 2.3 2.2
15 months 5.1 4.8 4.3 Exp. 3 (568° C) 3.4 3.2 2.7
B L. pneumophila regrowth factor (distal taps/recirculating lines)
Control System Water Use Fregency Experimental Water Use Freqgency
(39° C) Low Medium High System Low Medium High
5 months 0.8 0.9 0.7 |Baseline (39° C) 0.3 0.4 0.3
8 months 4.2 0.7 2.1 Exp.1 (42° C) 1.5 0.5 0.5
13 months 1.9 5.6 1.9 Exp. 2 (51° C) 68.2 0.7 0.6
15 months 5.5 3.2 1.0 Exp. 3 (58° C) 2.7 1.6 0.5
C Total L. pneumophila yield per week (log gene copies)
Control System Water Use Freqgency Experimental Water Use Fregency
(39° C) Low Medium High System Low Medium High
5 months 6.9 7.4 8.1 Baseline (39° C) 7.0 7.5 8.2
8 months 6.9 6.6 7.9 Exp.1 (42° C) 6.2 6.2 7.0
13 months 7.0 7.9 8.3 Exp. 2 (51° C) 7.0 5.5 6.3
15 months 7.8 8.0 8.4 Exp. 3 (68° C) 6.1 6.4 6.7




Candidate Contaminant List (CCL)

A list of drinking water contaminants that are NOT currently
regulated but are known or anticipated to occur in public water
systems.

* These contaminants may require future regulation under SDWA.

 SDWA requires EPA to publish CCL every 5 years
e CCL1(1998)
e CCL2 (2005)
* CCL3 (2009)
« CCL4 (2016)
« CCL5 (2021)

* Regulatory determinations: EPA is required to make formal
decision for at least five contaminants on whether to develop a
national primary regulation.

21



CCL 5 Microbial Contaminants

Contaminant

Disease and infections

Adenovirus

Virus most commonly causing respiratory illness, and
occasionally gastrointestinal illness

Caliciviruses

\Virus (includes Norovirus) causing mild self-limiting
gastrointestinal illness

Campylobacter jejuni |Bacterium causing mild self-limiting gastroentestinal
illness
Enteroviruses Group of viruses including polioviruses, coxsackieviruses

and echoviruses that can cause mild respiratory illness

Escherichia coli (0157)

Toxin-producing bacterium causing gastrointestinal
illness and kidney failure

Helicobacter pylori

Bacterium sometimes found in the environment
capable of colonizing human gut that can cause ulcers

and cancer




CCL 5 Microbial

Contaminants (Continued)

Contaminant

Disease and infections

Legionella Bacterium found in the environment including hot

bneumophila water systems causing lung diseases when inhaled

Mycobacterium avium, Bacterium causing lung infection in those with

Mycobacterium underlying lung disease, and disseminated infection in

abscessus the severely immunocompromised

Naegleria fowleri Protozoan parasite found in shallow, warm surface and
ground water causing primary amebic
meningoencephalitis

Pseudomonas Bacterium that is often multi-drug resistant and causes

aeruginosa skin, blood, and ear infections

Shigella sonnei

Bacterium causing mild self-limiting gastrointestinal

illness and bloody diarrhea




What is Antibiotic Resistance (AR)?

Bacteria adapt to survive our

methods of killing them
* We are losing the ability to treat

infections
A. Conjugation B. Transformation C. Transduction
Bacterial DNA Van DNA fragments &
[ ,FF-plasmld ’ . }
y 250 \ %‘ F w0 / / s Viral DNA
G J Pilus \ @3\ J A ‘_“o % ) (&%) — Bacterial DNA
Donor (F* cell) Recipie t (Fcell) Dead bacterial cell Live bacterial cell J
" g : <Y " /—Bacterial DNA fragments
: (ELCSED S ('Q/\?Q/T) , {”'0 % ‘ : ) J‘V“—VlralDNA copies
i Fragment t,gs ti l
(;9\9 oj\”\ . &® o # @)
0 g Id N?F II Traﬁsformed cell Virion assembly Tr-ansduction of
recipient cell
Horizontal Gene Transfer G

@
. @ \ A & 3 9
<

%@6’5

@
%
©

Initial sgnsitive Antibiotics kill Resistant cells take
popu lation with rare sensitive cells but over the population
resistant cell not resistant cells

Bacteria can give their genes to

one another
* AR can develop in non-pathogenic

bacteria and be passed to pathogens
* Its hard to study all bacteria for AR when our
tools were meant for specific pathogens
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THE STATE OF THE

« CDDEP: US-India Global
Antibiotic Resistance
Partnership:

* In Europe, 25,000 deaths are
attributable to antibiotic-
resistant infections, with cost of
€1.5 billion annually (EMA,
ECDC 2009).

* In India, 58,000 neonatal
sepsis deaths are attributable
to drug resistant infections
(Laxminarayan et al. 2013)
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Antibiotic Resistance as an Emerging “Pathogen” in

Water

« 2019 CDC Report:

o 2.8 million Americans fall
Il from antibiotic-resistant
bacteria

« Atleast 35,000 die as a
result (many more if count
complications)

« $55 billion annual cost

“Antibiotic-resistant infections can happen
anywhere. Data show that most happen in
the general community”

ANTIBIOTIC RESISTANCE THREATS
IN THE UNITED STATES

2019

7 US Department of
U @] HRhend Human Serviem
( smedall] Ceners fer iseese
il we Srienten
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Antimicrobial Resistance and the Water Environment: What to Monitor?

Most AR infections are acquired in
the community as opposed to Iin

hospitals
« Where are AR infections being
acquired?
* Where is AR developing?

UN@&

environment
programme

Strengthening environmental action
in the One Health response to
antimicrobial resistance

Antimicrobial resistance and the environment

Human
antibiotic

The environment is key to antibiotic resistance. Bacteria in soil, rivers and seawater can develop resistance use jumped
through contact with resistant bacteria, antibiotics, and disinfectant agents released by human activity. 35% inthe
H D[]

People and livestock can then be exposed to more resistant bacteria through food, water, and air.

Upto ’3‘—"‘3-‘ R . ”FH

75% of =
antibiotics 70% of Manure fertilizers cause antibiotic
used in aguaculture antibiotics contamination in surface runoff, Antimicrobial
may be lostinto are used by groundwater and drainage networks use for livestock Antibiatics are increasingly
the surrounding animals . will jump 67% by  used to boost animal growth in
environment , 2030 intensive farming, espedially in
7] developing countries
v .
. L
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> absorbed by plants N O flows including
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How can we Measure Antibiotic Resistance?

Culture - # "\ | Quantitative Polymerase
By culturing Lt \. 2 | Chain Reaction (qPCR)
organisms, we can: * Asingle gene is copied over
» Quantify live cells can: andhover and Iback calculated
: : e Fi to the original concentration
» Quantify rate of resistance Find theglenfes ) gf -
e e responsible for * Can quantify specific
* Assess what antibiotics the ant?biotic resistance ene(l e
organism is resistant to &
: * Compar rial J———
* [solate colonies Co 'Pd e.bac'Fe d
strains with high | [/ J
* Whole Genome SequenCEf resolution ==
the isolates S )

nnnnnnnnnnnnn

28



Tracking Antibiotic Resistance Genes (ARGs) as Environmental

“Contaminants”
Poudre River Colorado, USA 2005-2012

- Primary water source is snowmelt from the Rocky

Mountains

- qPCR and culture used ARB = Antibiotic

. sull ARGs (sulfonamide resistance) strongly ~ fesistant Bacteria ARG= Antibiotic
correlated with upstream WWTPs and animal Resistance Gene
feeding operations (AFOs)
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Digital Droplet PCR (ddPCR) vs gPCR

Culture
* Quantify |
live cells

e Quantify rate of
resistance

e Assess what
antibiotics the
organism is
resistant to

* |solate colonies

* Whole Genome
Sequence the
isolates

Whole Genome
Sequencmg (WGS)

Find the genes
responsible for
antibiotic
resistance
Compare
bacterial strains
with high
resolution

Quantitative
Polymerase Chain
Reaction (qPCR)

* Can quantify
specific AR genes

* Requires a
standard curve
each run

Baseline

Droplet Digital Polymerase
Chain Reaction (ddPCR)

Can quantify specific AR

genes

e At alower concentration

* Without a standard curve

* With less inhibition

* More precision
-—

than qPCR | |

Traditional PCR: Digital PCR:
One fluorescence Thousands of distin

m rements



e Using wastewater to assess
population health and levels

of AR

* Poor infrastructure makes

WABS challenging to conduct

e Stormwater infiltration

changes ARG and ARB signal

Amanda
Darling, PhD
at VT, now at

Harvard
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16S rRNA Amplicon Sequencing

bt Whole Genome Quantitative Droplet Digital

* Quantify | e, Sequencmg (WGS) Polymerase Chain Polymerase Chain
live cells ¥ N\ Reaction (qPCR) Reaction (ddPCR)

* Quantify rate of e Can quantify * More precision

resistance
. specn‘|c AR genes than qPCR =
» Assess antibiotics Find the ARGs e
the organism  Compare strains

cccccccccccc

16S rRNA Amplicon Sequencing
* Every bacteria has a 16S gene

 Amplify all 16S genes in a sample, then sequence

Variability in 50-base windows

w & f ‘ H\f\fwwﬁlﬂﬁ

400 800 1000 1200 1400 1600

* Hard to differentiate some bacteria’s 16S genes sase positon n 165 FNA

* Able to analyze all of the bacteria in your sample
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Microbiome as a “Fingerprint”:
Wastewater, Recycled Water, Bottled W

Matt Blair,
Post-Doc,
EAWAG,
Switzerland

YRPilot

PC1 (9 %)

PC3 (3 %)

Principle Coordinate Analysis: 16S rRNA gene Amplicon Sequences



Metagenomic Sequencing

e Quantify
live cells

* Quantify rate of
resistance

* Assess antibiotics
the organism
resists

Whole Genome
Sequencmg (WGS)

. Fmd the ARGs
* Compare strains

Quantitative
Polymerase Chain
Reaction (qPCR)

* Can quantify
specn‘|c AR genes

......
nnnnnnnnn

ccccccccccccc

16S rRNA Amplicon Sequencing

 Amplify all 16S genes in a
sample, then sequence

Base posi nnnnnnnnnn

Metagenomic Sequencing

* Sequence all genes in a sample

* Allows semi-quantitative
measure of all genes and
bacteria in a sample

Droplet Digital
Polymerase Chain
Reaction (ddPCR)

* More precision
than gPCR =

°
ek’
VS. e
-
5
b¥
i
s
Traditional PCR:
One fluorescence tinct
measurement o :




Global Metagenomic ARG Survey

INFLUENT Sewage: Ranked “Total ARG” Abundance

5_

aminocoumarin [
aminoglycoside [ |
bacitracin
beta-lactam
elfamycin
fosfomycin
glycopeptide
MLS
multidrug
nucleoside
peptide

16S rRNA gene Normalized ARGs
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-Highest in Hong Kong and India
-Lowest in Sweden

Locations:
CHE — Switzerland
HKG — Hong Kong

phenicol IND — India
pleuromutilin PHL - Philippines
polymyxin SWE - Sweden
quinolone USA — United States
rifamycin

sulfonamide .

teracenomycin Riguelme et al.
tetracycline ES&T 2022

triclosan

trimethoprim

undetermined

Key Collaborator:
Peter Vikesland, VTech36
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Long-read Metagenomic Sequencing

e Quantify
live cells

* Quantify rate of
resistance

* Assess antibiotics
the organism
resists

16S rRNA Sequencing
 Amplify all 16S genes in a

sample, then sequence

(\ V4

c 008 J v2 V5
w i (LN n “
; - \ ] b ﬂ Tat [ \\\) lf
0 2 4 0 8 200 1400 16

Whole Genome
Sequencmg (WGS)
£

. Fmd the ARGs
* Compare strains

Metagenomic Sequencing

bacteria in a sample

* Semi-quantitative
measure of all genes and

Quantitative
Polymerase Chain
Reaction (qPCR)

* Can quantify
specific AR genes

.......
uuuuuuuuuu

Droplet Digital
Polymerase Chain
Reaction (ddPCR)

* More precision
than gPCR =

ok
Qe 5|
vs, |cel
2
o
Ak
a3
|
/
|
\
Traditional PCR:
One fluorescence Thousands of distine
measurement Ll t

Long-read Metagenomic
Sequencing

* Longer sequences at a time

* Allows us to see what genes are
next to one another
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Finding Horizonal Gene Transfer Events

Finding who passes what ARG to whom, when it happens, and seeing
what caused

* Long reads allow context of ARGs in longitudinal datasets to predict
horizontal gene transfer events

"in situ" horizontal gene transfer inference

[ W 1
ey g :.:] [ W ] is there a
e, Y P Shared gene detected potential ]
. _ i’ o X prevnously” donor? H
_ contig A potential PoTenﬂaI in J i
Connor Brown, contig B = recipient contig H situHET
PhD at VT, now Taxa A I= Taxa B yes 02 no
at Aalborg [not due to HGT | [ not due to HGT
University, W]

Denmark
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uture: What to Monitor and Why?

* ARBs (which ARBs?)
* ARPs (which ARPs?)
* ARGs (which ARGs?)

* Mobile genetic elements
(MGEs- plasmids, transposons,

ARB = Antibiotic
Resistant Bacteria

integrons) ARG= Antibiotic Resistance
. . . Mariana Ruiz Villarreal- Gene
* Imminent public health risk? Wikimedia Commons
o PO ten tial for n e W Stra inS Of Environment International 130 (2019) 104880

ARBs/ARPs to develop

Environment International

journal homepage: www.elsevier.com/locate/envint

A conceptual framework for the environmental surveillance of antibiotics = M)
and antibiotic resistance e

Patricia M.C. Huijbers, Carl-Fredrik Flach, D.G. Joakim Larsson”



Linking Sampling Location and Analysis with Monitoring
Obijective

THE

Water

Research
T FOUNDATION

:::::: EEVRIH[] I_ Project 5052
T Mogslecin 00
pubs.acs.org/est

Antimicrobial Resistance Monitoring of Water Environments: A
Framework for Standardized Methods and Quality Control

Krista Liguori, Ishi Keenum, Benjamin C. Davis, Jeanette Calarco, Erin Milligan, Valerie ]. Harwood,
and Amy Pruden*

Cite This: Environ. Sdi. Technol. 2022, 56, 9149-9160 E Read Online

ACCESS| |l Metrics & More | B3 Article Recommendations | © Supporting Information

ABSTRACT: Antimicrobial resistance (AMR) is a grand societal
challenge with important dimensions in the water environment
that contribute to its evolution and spread. Environmental
§ monitoring could provide vital information for mitigating the
2I2IZ : spread of AMR; this includes assessing antibiotic resistance genes
(ARGs) circulating among human populations, identifying key
pots for evolution and d ination of resistance, informing

=N

N
Nm-potab'e idemiological and h health risk assessment models, and
) ) quanleymg removal efficiencies by domestic wastewater infra-
reuse structure. However, standardized methods for monitoring AMR in
the water environment will be vital to producing the comparable
=y data sets needed to address such questions. Here we sought to
B establish scientific consensus on a framework for such stand-

Impacted

Ri_ver f\

Ny

Sedlment ’v‘ : t 'T ardization, evaluating the state of the science and practice of AMR monitoring of wastewater, recycled water, and surface water,
g=N e [# through a literature review, survey, and workshop leveraging the expertise of academic, governmental, consulting, and water utility
\ 1W ’ ” ¥ ’H professionals.

ﬁ e ﬂ H ‘1 KEYWORDS: antibiotic resistance, surveillance, standardization, wastewater, recycled water, surface water
P‘ po U1 ‘) o "q ”~

[ A e i Liguori et al. ES&T 2022
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Quantitative Microbial Risk Assessment

¥

& HAZARD

IDENTIFICATION * Excellent framework for

A established pathogens, e.g., E. coli
U‘*DOSE RESPONSE i% EXPOSURE * Challenging framework for

antibiotic resistance:

\/ * Colonization, delayed onset,

morbidity versus mortality

' ’ RISK
I | CHARACTERIZATION e Overall “risk” of new resistant strain
emerging versus traditional human
health risk
RISK y
MANAGEMENT V * ‘
Key Collaborator: .
Kerry Hamilton, WRF Project 4961
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MetaCompare: A Computational Pipeline for Ranking
“Relative Resistome Risk” in Various Environmental

Compartments

Oh et al. 2018. FEMS
Microbiol. Ecol.
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Microbiology 13.2 (2015): 116-123.
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Relative Resistome Risk Score through a WWTP

Stage of Treatment y
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Recycled Water: MetaCompare

=l Florida Sampling Point
m{Je= \firginia Sampling Point

- v % %

Primary Activated Secondary
Clarification Sludge Clarification

Metagenomic

.

N

system

Chlorine
Disinfection

I_M ce e e "
5 5 % :
Coagulation/

Flocculation Sedimentation  Ozonation  Biologically  Granular
Active Activated
Filtration Carbon

uv
Disinfection

Chlorine
Disinfection

Scale: Numbers refer to stage of treatment and water

delivery

Ishi Keeenum

UV Disinfection .
o [O]
‘ ‘ ‘ ‘ distribution

o L]

groundwater
recharge

Q(ARG, MGE)

Florida

A \irginia

Q(ARG, MGE, PAT)
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Future: Cyberinfrastructure-Enabled Monitoring of
Antibiotic Resistance and Pathogens

Sewage
Collection

Computing
WWTP
Metadata

N Met AC

AR risk indicator
profiling &

Anomaly detection

\ I Cloud CI4-WARS =
Metagenomic = é ) LS

Sequencing Relational & Interactive dashboards &

i nonrelational databases Report/alert system

<« >4
- v

Researchers/water
LGOS fessionals/public health '
Discharge professionals/public health agencies

Key Collaborator:
Liging Zhang, Vech
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Antibiotic Rx Before/During/After Pandemic: SW Virginia

A Regional Medical Center B 2017 2018 2019 2020 2021 2022
201
151 =
=
o
900 S,
10+ Z
Co—PI Peter N
2] ) - ©
Vikesland & = o
0 8 g
g A o 54 - @
2 o
Iy LR L LT L oL S
; o FanSRRSERRESAeiE e L e
O _'_ | | || | | | | | | |
S 600+ _5 o HE=mENS CEETEL T EE e EEE B P T s
= AT ﬁ a
o) « 5 201
o 9 |
iy ) B
= c
8 S 151 B _ o
£ @© o
a
5 S - n =
© 300 o =
10+ 2
N
©
&
L (TR L T TION L
Ayella Maile- 01 o nllss Rin=nlannlNs cnoncsnsnlcs sinanccnassl Bann canclinn siins=n=00CE
. PUS S s A S Qobd:éié \'—c'\u%érdxbr'-obdaé“':é "—c'w'oé-dnb&c'oé:é:':é J—c'xw'oéru.r'u:br'-obdvéié x'—cl\lol')érl.fl)tbr:‘cbd)‘é_:':é "—c'\m")én-ufubhlobé:é:':‘cﬂ
Moskowitz et =228 358 Month
. . N N & & & W
al' In review fear Antimicrobial Class . aminoglycoside . glycopeptide . nitroimidazole quinolone tetracycline 47
Yearly Quarter © 1 A 2 ® 3 beta-lactam mls B other B rifamycin [ trimethoprim




Unique ARGs to two Neighboring WWTPs circa Pandemic
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Metagenomics, Pathogens, and ARGs in the
Water Industry- Final Reports

« Water, Environment, and Public Health Agencies Interested in

Monitoring:
* What do we tell them to monitor and where? C’)
» Water Research Foundation Project 4813
 Critical Evaluation and Assessment of Health and Environmental Risks from
Antibiotic Resistance in Reuse and Wastewater Applications (Pl Hamilton)
« Water Research Foundation Project 4961

e The Use of Next Generation Sequencing (NGS) Technologies and Metagenomics
Approaches to Evaluate Water and Wastewater Quality Monitoring and Treatment
Technologies (Pl Pruden)

THE

Water

Research
FOUNDATION

» Water Research Foundation Project 5052

e Standardizing Methods with QA/QC Standards for Investigating the Occurrence
and Removal of Antibiotic Resistant Bacteria/Antibiotic Resistance Genes
(ARB/ARGS) in Surface Water, Wastewater, and Recycled Water (Pl Pruden)
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Pathogen Monitoring in Water and Wastewater: Past,
Present, Future

* Past/Present: Fecal indicators (total coliforms, fecal coliforms, E. coli)

* Present/Future: Molecular (i.e., DNA/RNA-based monitoring) as a screen,
coupled with culture to confirm viable pathogens

e Future: DNA sequencing coupled with cyberinfrastructure to tackle new
pathogens and public health concerns (e.g., COVID and antibiotic
resistance)

* Not just monitoring drinking water for removal, but also sewage as a
public health surveillance resource.
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